Source code for niftynet.layer.convolution

# -*- coding: utf-8 -*-
from __future__ import absolute_import, print_function

import numpy as np
import tensorflow as tf

from niftynet.layer import layer_util
from niftynet.layer.activation import ActiLayer
from niftynet.layer.base_layer import TrainableLayer
from niftynet.layer.bn import BNLayer
from niftynet.layer.gn import GNLayer
from niftynet.utilities.util_common import look_up_operations

SUPPORTED_PADDING = set(['SAME', 'VALID'])


[docs]def default_w_initializer(): def _initializer(shape, dtype, partition_info): stddev = np.sqrt(2.0 / np.prod(shape[:-1])) from tensorflow.python.ops import random_ops return random_ops.truncated_normal(shape, 0.0, stddev, dtype=tf.float32) # return tf.truncated_normal_initializer( # mean=0.0, stddev=stddev, dtype=tf.float32) return _initializer
[docs]def default_b_initializer(): return tf.constant_initializer(0.0)
[docs]class ConvLayer(TrainableLayer): """ This class defines a simple convolution with an optional bias term. Please consider ``ConvolutionalLayer`` if batch_norm and activation are also used. """ def __init__(self, n_output_chns, kernel_size=3, stride=1, dilation=1, padding='SAME', with_bias=False, w_initializer=None, w_regularizer=None, b_initializer=None, b_regularizer=None, name='conv'): super(ConvLayer, self).__init__(name=name) self.padding = look_up_operations(padding.upper(), SUPPORTED_PADDING) self.n_output_chns = int(n_output_chns) self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.with_bias = with_bias self.initializers = { 'w': w_initializer if w_initializer else default_w_initializer(), 'b': b_initializer if b_initializer else default_b_initializer()} self.regularizers = {'w': w_regularizer, 'b': b_regularizer}
[docs] def layer_op(self, input_tensor): input_shape = input_tensor.shape.as_list() n_input_chns = input_shape[-1] spatial_rank = layer_util.infer_spatial_rank(input_tensor) # initialize conv kernels/strides and then apply w_full_size = layer_util.expand_spatial_params( self.kernel_size, spatial_rank) # expand kernel size to include number of features w_full_size = w_full_size + (n_input_chns, self.n_output_chns) full_stride = layer_util.expand_spatial_params( self.stride, spatial_rank) full_dilation = layer_util.expand_spatial_params( self.dilation, spatial_rank) conv_kernel = tf.get_variable( 'w', shape=w_full_size, initializer=self.initializers['w'], regularizer=self.regularizers['w']) output_tensor = tf.nn.convolution(input=input_tensor, filter=conv_kernel, strides=full_stride, dilation_rate=full_dilation, padding=self.padding, name='conv') if not self.with_bias: return output_tensor # adding the bias term bias_term = tf.get_variable( 'b', shape=self.n_output_chns, initializer=self.initializers['b'], regularizer=self.regularizers['b']) output_tensor = tf.nn.bias_add(output_tensor, bias_term, name='add_bias') return output_tensor
[docs]class ConvolutionalLayer(TrainableLayer): """ This class defines a composite layer with optional components:: convolution -> batch_norm -> activation -> dropout The b_initializer and b_regularizer are applied to the ConvLayer The w_initializer and w_regularizer are applied to the ConvLayer, the batch normalisation layer, and the activation layer (for 'prelu') """ def __init__(self, n_output_chns, kernel_size=3, stride=1, dilation=1, padding='SAME', with_bias=False, with_bn=True, group_size=-1, acti_func=None, preactivation=False, w_initializer=None, w_regularizer=None, b_initializer=None, b_regularizer=None, moving_decay=0.9, eps=1e-5, name="conv"): self.acti_func = acti_func self.with_bn = with_bn self.group_size = group_size self.preactivation = preactivation self.layer_name = '{}'.format(name) if self.with_bn and group_size > 0: raise ValueError('only choose either batchnorm or groupnorm') if self.with_bn: self.layer_name += '_bn' if self.group_size > 0: self.layer_name += '_gn' if self.acti_func is not None: self.layer_name += '_{}'.format(self.acti_func) super(ConvolutionalLayer, self).__init__(name=self.layer_name) # for ConvLayer self.n_output_chns = n_output_chns self.kernel_size = kernel_size self.stride = stride self.dilation = dilation self.padding = padding self.with_bias = with_bias # for BNLayer self.moving_decay = moving_decay self.eps = eps self.initializers = { 'w': w_initializer if w_initializer else default_w_initializer(), 'b': b_initializer if b_initializer else default_b_initializer()} self.regularizers = {'w': w_regularizer, 'b': b_regularizer}
[docs] def layer_op(self, input_tensor, is_training=None, keep_prob=None): conv_layer = ConvLayer(n_output_chns=self.n_output_chns, kernel_size=self.kernel_size, stride=self.stride, dilation=self.dilation, padding=self.padding, with_bias=self.with_bias, w_initializer=self.initializers['w'], w_regularizer=self.regularizers['w'], b_initializer=self.initializers['b'], b_regularizer=self.regularizers['b'], name='conv_') if self.with_bn: if is_training is None: raise ValueError('is_training argument should be ' 'True or False unless with_bn is False') bn_layer = BNLayer( regularizer=self.regularizers['w'], moving_decay=self.moving_decay, eps=self.eps, name='bn_') if self.group_size > 0: gn_layer = GNLayer( regularizer=self.regularizers['w'], group_size=self.group_size, eps=self.eps, name='gn_') if self.acti_func is not None: acti_layer = ActiLayer( func=self.acti_func, regularizer=self.regularizers['w'], name='acti_') if keep_prob is not None: dropout_layer = ActiLayer(func='dropout', name='dropout_') def activation(output_tensor): if self.with_bn: output_tensor = bn_layer(output_tensor, is_training) if self.group_size > 0: output_tensor = gn_layer(output_tensor) if self.acti_func is not None: output_tensor = acti_layer(output_tensor) if keep_prob is not None: output_tensor = dropout_layer(output_tensor, keep_prob=keep_prob) return output_tensor if self.preactivation: output_tensor = conv_layer(activation(input_tensor)) else: output_tensor = activation(conv_layer(input_tensor)) return output_tensor